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1 Main Page

1.1 Preface: How to use this document

The documentation for ForceBalance exists in two forms: a web page and a PDF manual. They contain equivalent
content. The newest versions of the software and documentation, along with relevant literature, can be found on the
SimTK website.

Users of the program should read the Introduction, Installation, Usage, and Tutorial sections on the main page.
Developers and contributors should read the Introduction chapter, including the Program Layout and Creating

Documentation sections. The API documentation, which describes all of the modules, classes and functions in
the program, is intended as a reference for contributors who are writing code.

ForceBalance is a work in progress; using the program is nontrivial and many features are still being actively
developed. Thus, users and developers are highly encouraged to contact me through the SimTK website, either
by sending me email or posting to the public forum, in order to get things up and running.

Thanks!
Lee-Ping Wang
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1.2 Introduction

Welcome to ForceBalance! :)
This is a theoretical and computational chemistry program primarily developed by Lee-Ping Wang and the Wang

research group at UC Davis. The full list of people who made this project possible are given in the Credits.
The function of ForceBalance is automatic force field optimization. Here I will provide some background, which for

the sake of brevity and readability will lack precision and details. In the future, this documentation will include literature
citations which will guide further reading.

1.2.1 Background: Empirical Potentials

In theoretical and computational chemistry, there are many methods for computing the potential energy of a collection
of atoms and molecules given their positions in space. For a system of N particles, the potential energy surface (or
potential for short) is a function of the 3N variables that specify the atomic coordinates. The potential is the foundation
for many types of atomistic simulations, including molecular dynamics and Monte Carlo, which are used to simulate all
sorts of chemical and biochemical processes ranging from protein folding and enzyme catalysis to reactions between
small molecules in interstellar clouds.

The true potential is given by the energy eigenvalue of the time-independent Schrodinger's equation, but since the
exact solution is intractable for virtually all systems of interest, approximate methods are used. Some are ab initio
methods ('from first principles') since they are derived directly from approximating Schrodinger's equation; examples
include the independent electron approximation (Hartree-Fock) and perturbation theory (MP2). However, most methods
contain some tunable constants or empirical parameters which are carefully chosen to make the method as accurate
as possible. Three examples: the widely used B3LYP approximation in density functional theory (DFT) contains three
parameters, the semiempirical PM3 method has 10-20 parameters per chemical element, and classical force fields have
hundreds to thousands of parameters. All such formulations require an accurate parameterization to properly describe
reality.

Figure 1: An arrangement of simulation methods by accuracy vs. computational cost.
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The main audience of ForceBalance is the scientific community that uses and develops classical force fields. These
force fields do not use the Schrodinger's equation as a starting point; instead, the potential is entirely specified using
elementary mathematical functions. Thus, the rigorous physical foundation is sacrificed but the computational cost is
reduced by a factor of millions, enabling atomic-resolution simulations of large biomolecules on long timescales and
allowing the study of problems like protein folding.

In classical force fields, relatively few parameters may be determined directly from experiment - for instance, a
chemical bond may be described using a harmonic spring with the experimental bond length and vibrational frequency.
More often there is no experimentally measurable counterpart to a parameter - for example, electrostatic interactions
are often described as Coulomb interactions between pairs of atomic point ”partial charges”, but the fractional charge
assigned to each atom has no rigorous experimental of theoretical definition. To complicate matters further, most
molecular motions arise from a combination of interactions and are sensitive to many parameters at once - for example,
the dihedral interaction term is intended to govern torsional motion about a bond, but these motions are modulated by
the flexibility of the nearby bond and angle interactions as well as the nonbonded interactions on either side.

Figure 2: An illustration of some interactions typically found in classical force fields.

For all of these reasons, force field parameterization is difficult. In the current practice, parameters are often
determined by fitting to results from other calculations (for example, restrained electrostatic potential fitting (RESP)
for determining the partial charges) or chosen so that the simulation results match experimental measurements (for
example, adjusting the partial charges on a solvent molecule to reproduce the bulk dielectric constant.) Published
force fields have been modified by hand over decades to maximize their agreement with experimental observations
(for example, adjusting some parameters in order to reproduce particular protein NMR structure) at the expense of
reproducibility.

1.2.2 Purpose and brief description of this program

Given this background, I can make the following statement. The purpose of ForceBalance is to create force fields by
applying a highly general and systematic process with explicitly specified input data and optimization methods,
paving the way to higher accuracy and improved reproducibility.
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At a high level, ForceBalance takes an empirical potential and a set of reference data as inputs, and tunes the
parameters such that the simulations are able to reproduce the data as accurately as possible. Examples of reference
data include energy and forces from high-level QM calculations, experimentally known molecular properties (e.g. polar-
izabilities and multipole moments), and experimentally measured bulk properties (e.g. density and dielectric constant).

ForceBalance presents the problem of potential optimization in a unified and easily extensible framework. Since
there are many empirical potentials in theoretical chemistry and similarly many types of reference data, significant effort
is taken to provide an infrastructure which allows a researcher to fit any type of potential to any type of reference data.

Conceptually, a set of reference data (usually a physical quantity of some kind), in combination with a method for
computing the corresponding quantity with the force field, is called a target. For example:

• A force field can predict the density of a liquid by running NPT molecular dynamics, and this computed value can
be compared against the experimental density.

• A force field can be used to evaluate the energies and forces at several molecular geometries, and these can
be compared against energies and forces from higher-level quantum chemistry calculations using these same
geometries. This is known as force and energy matching.

• A force field can predict the multipole moments and polarizabilities of a molecule isolated in vacuum, and these
can be compared against experimental measurements.

Within a target, the accuracy of the force field can be optimized by tuning the parameters to minimize the difference
between the computed and reference quantities. One or more targets can be combined to produce an aggregate
objective function whose domain is the parameter space. This objective function, which typically depends on the
parameters in a complex way, is minimized using nonlinear optimization algorithms. The result is a force field which
minimizes the errors for all of the targets.

Figure 3: The division of the potential optimization problem into three parts; the force field, targets and optimization
algorithm.
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The problem is now split into three main components; the force field, the targets, and the optimization algorithm.
ForceBalance uses this conceptual division to define three classes with minimal interdependence. Thus, if a researcher
wishes to explore a new functional form, incorporate a new type of reference data or try a new optimization algorithm,
he or she would only need to contribute to one branch of the program without having to restructure the entire code
base.

The scientific problems and concepts that this program is based upon are further described in my Powerpoint
presentations and publications, which can be found on the SimTK website.

1.3 Credits

• Lee-Ping Wang is the principal developer and author. (2006-2019)

• Yudong Qiu contributed the surface tension target, pure finite-difference for thermodynamic property gradients,
the optimized geometry target, the OpenMM implementation of the vibrational frequency target, the interface to
PropertyEstimator, and other improvements when ForceBalance is used with the SMIRNOFF force field. (2016-
2019)

• Jeffrey Wagner contributed modernized testing infrastructure and continuous integration, and assisted with de-
veloping the interface to the Open Force Field toolkit. (2019)

• Hyesu Jang contributed modernized testing infrastructure with Jeff Wagner. (2019)

• Simon Boothroyd contributed the interface to PropertyEstimator with Yudong Qiu. (2019)

• Arthur Vigil contributed the unit testing framework and many unit tests, significant improvements to the automatic
documentation generation, logging of output, graphical user interface, and various code improvements. (2012-
2013)

• Keri McKiernan contributed the lipid bilayer target, starting from multiple initial conditions at each thermodynamic
phase point, and several other features. (2012-2015)

• Erik Brandt contributed the general thermodynamic property ”Thermo” target. (2014)

• Johnny Israeli contributed the XmlScript functionality that allows adjustable parameters to be read from embed-
ded scripts in OpenMM XML files. (2012)

• Matt Welborn contributed the parallelization-over-snapshots functionality in the general force matching module
(2011, only in the older ForTune code).

• Jiahao Chen contributed the call graph generator, the QTPIE fluctuating-charge force field (which Lee-Ping im-
plemented into GROMACS), the interface to the MOPAC semiempirical code, and many helpful discussions in
2009-2011. (Many of these are only in the older ForTune code)

• Troy Van Voorhis provided scientific guidance and many of the central ideas as well as financial support during
the time Lee-Ping was a graduate student (2006-2011).

• Vijay Pande provided scientific guidance and financial support, and through the SimBios program gave this
software a home on the Web at the SimTK website.

• Todd Martinez provided scientific guidance and financial support.

1.4 Funding

The development of this code has been supported in part by the following grants and awards:
NIH Grant R01 AI130684-02 ACS-PRF 58158-DNI6 NIH Grant U54 GM072970 Open Force Field Consortium
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2 Installation

This section covers how to install ForceBalance.
Currently only Linux is supported, though installation on other Unix-based systems (e.g. Mac OS) should also be

straightforward.
Importantly, note that ForceBalance does not contain a simulation engine. Instead it interfaces with simulation

software like GROMACS, TINKER, AMBER or OpenMM; reference data is obtained from experimental measurements
(consult the literature) or from quantum chemistry software (for example, NWChem or Q-Chem).

Several interfaces to existing software packages are provided. However, if you use ForceBalance for a research
project, you should be prepared to write some simple Python code to interface with a software package of your choice.
If you choose to do so, please contact me as I would be happy to include your contribution in the main distribution.

2.1 Installing ForceBalance using conda package manager

As of version 1.7.4, ForceBalance is available as a package on the conda-forge channel. To install the package, make
sure you are using an Anaconda/Miniconda Python distribution for Python versions 2.7, 3.5, 3.6, or 3.7, then run:

python setup.py install

This will install ForceBalance and all of the required dependencies. It will not install optional dependencies such as
OpenMM, Gromacs, AMBER, Tinker, CCTools/Work Queue, or the Open Force Field toolkit.

2.2 Installing ForceBalance using conda package manager

ForceBalance is packaged as a Python module. Here are the installation instructions.
A quick preface: Installing software can be a real pain. I tried to make ForceBalance easy to install by providing clear

instructions and minimizing the number of dependencies; however, complications and challenges during installation
happen all the time. If you are running into installation problems or having trouble resolving a dependency, please
contact me.

2.2.1 Prerequisites

ForceBalance requires the following software packages:

• Python version 2.7

• NumPy version 1.5

• SciPy version 0.9

The following packages are required for certain functionality:

• lxml version 2.3.4 - Python interface to libxml2 for parsing OpenMM force field files

• cctools version 3.4.1 - Cooperative Computing Tools from Notre Dame for distributed computing

• matplotlib version 2.0.2 - Python plotting library which produces publication quality figures

The following packages are used for documentation:

• Doxygen version 1.7.6.1

• Doxypy plugin for Doxygen

• LaTeX software such as TeXLive

• The dot program from graphviz software package
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2.2.2 Installing

To install the package, first extract the tarball that you downloaded from the webpage using the command:

tar xvzf ForceBalance-[version].tar.gz

Alternatively, download the newest Subversion revision from the SimTK website:

svn checkout https://simtk.org/svn/forcebalance

Upon extracting the distribution you will see this directory structure:

<root>
+- bin
| |- <Executable scripts>
+- src
| |- <ForceBalance source files>
+- ext
| |- <Extensions; self-contained software packages that are used by ForceBalance>
+- studies
| +- <ForceBalance example jobs>
+- doc
| +- callgraph
| | |- <Stuff for making a call graph>
| +- Images
| | |- <Images for the website and PDF manual>
| |- make-all-documentation.sh (Create the documentation)
| |- <Below are documentation chapters in Doxygen format>
| |- introduction.txt
| |- installation.txt
| |- usage.txt
| |- tutorial.txt
| |- glossary.txt
| |- <The above files are concatenated into mainpage.py>
| |- make-all-documentation.sh (Command for making all documentation)
| |- make-option-index.py (Create the option index documentation chapter)
| |- header.tex (Customize the LaTex documentation)
| |- add-tabs.py (Adds more navigation tabs to the webpage)
| |- DoxygenLayout.xml (Removes a navigation tab from the webpage)
| |- doxygen.cfg (Main configuration file for Doxygen)
| |- ForceBalance-Manual.pdf (PDF manual, but the one on the SimTK website is probably newer)
|- PKG-INFO (Auto-generated package information)
|- README.txt (Points to the SimTK website)
|- setup.py (Python script for installation)

To install the code into your default Python location, run this (you might need to be root):

python setup.py install

You might not have root permissions, or you may want to install the package somewhere other than the default
location. You can install to a custom location (for example, to /home/leeping/local) by running:

python setup.py install --prefix=/home/leeping/local

Assuming your Python version is 2.7, the executable scripts will be placed into /home/leeping/local/bin
and the module will be placed into /home/leeping/local/lib/python2.7/site-packages/forcebalance.

Note that Python does not always recognize installed modules in custom locations. Any one of the three below
options will work for adding custom locations to the Python search path for installed modules:

ln -s /home/leeping/local /home/leeping/.local

export PYTHONUSERBASE=/home/leeping/local

export PYTHONPATH=$PYTHONPATH:/home/leeping/local/lib/python2.7
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As with the installation of any software, there are potential issues with dependencies (for example, scipy and
lxml.) One way to resolve dependencies is to use the Enthought Python Distribution (EPD), which contains
all of the required packages and is free for academic users. Install EPD from the Enthought website.
Configure your environment by running both of the commands below (assuming Enthought was installed to
/home/leeping/opt/epd-7.3.2 , with the python executable in the bin subdirectory):

export PATH=/home/leeping/opt/epd-7.3.2/bin:$PATH
export PYTHONUSERBASE=/home/leeping/opt/epd-7.3.2

An alternative option is to use Anaconda2, that can be downloaded the Continuum website. It is also free
for academic users.

export PATH=/home/leeping/opt/anaconda2/bin:$PATH

Once you have done this, the Numpy, Scipy, Matplotlib and lxml dependency issues should be resolved and Force←↩
Balance will run without any problems.

Here are a list of installation notes (not required if you install ForceBalance into the Enthought Python Distribution).
These notes assume that Python and other packages are installed into $HOME/local.

• The installation of Numpy, Scipy and lxml may be facilitated by installing the pip package - simply run a command
like pip install numpy.

• Scipy requires a BLAS (Basic Linear Algebra Subroutines) library to be installed. On certain Linux distribu-
tions such as Ubuntu, the BLAS libraries and headers can be found on the repository (run sudo apt-get
install libblas-dev). Also, BLAS is provided by libraries such as ATLAS (Automatically Tuned Linear
Algebra Software) or the Intel MKL (Math Kernel Library) for Intel processors. To compile Scipy with Intel's MKL,
follow the guide on Intel's website. To use ATLAS, install the package from the ATLAS website and
set the ATLAS environment variable (for example, export ATLAS=$HOME/local/lib/libatlas.so)
before installing Scipy.

• lxml is a Python interface to the libxml2 XML parser. After much ado, I decided to use lxml instead of the
xml module in Python's standard library for several reasons (xml contains only limited support for XPath,
scrambles the ordering of attributes in an element, etc.) The downside is that it can be harder to install. In-
stallation instructions can be found on the lxml website but summarized here. The packages libxml2
and libxslt need to be installed first, and in that order. On Ubuntu, run sudo apt-get install
libxml2-dev libxslt1-dev. To compile from source, run ./configure --prefix=$HO←↩
ME/local --with-python=$HOME/local. Then run make followed by make install. Python
itself needs to be compiled with --enable-shared for this to work. Finally, download and unzip lxml, then
run python setup.py install --prefix=$HOME/local .

2.3 Create documentation

This documentation is created by Doxygen with the Doxypy plugin. To create new documentation or expand on what's
here, follow the examples in the source code or visit the Doxygen home page.

To create this documentation from the source files, go to the doc directory in the distribution and run doxygen
doxygen.cfg to generate the HTML documentation and LaTeX source files. Run the add-tabs.py script
to generate the extra navigation tabs for the HTML documentation. Then go to the latex directory and type in
make to build the PDF manual (You will need a LaTeX distribution for this.) All of this is automated by running
make-all-documentation.sh.

2.4 Installing GROMACS-X2

GROMACS-X2 is not required for ForceBalance and is currently deprecated. Installation is not recommended. This
section is retained for your information and in case I choose to revive the software.

I have provided a specialized version of GROMACS (dubbed version 4.0.7-X2) on the SimTK website which
interfaces with ForceBalance through the abinitio gmxx2 module. Although interfacing with unmodified simulation soft-
ware is straightforward, GROMACS-X2 is optimized for force field optimization and makes things much faster.
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GROMACS-X2 contains major modifications from GROMACS 4.0.7. Most importantly, it enables computation of
the objective function and its analytic derivatives for rapid energy and force matching. There is also an implementation
of the QTPIE fluctuating-charge polarizable force field, and the beginnings of a GROMACS/Q-Chem interface (carefully
implemented but not extensively tested). Most of the changes were added in several new source files (less than ten):
qtpie.c, fortune.c, fortune utils.c, fortune vsite.c, fortune nb utils.c, zmatrix.c and
their corresponding header files, and fortunerec.h for the force matching data structure. The name 'fortune'
derives from back when this code was called ForTune.

The force matching functions are turned on by calling mdrun with the command line argument '-fortune' ;
without this option, there should be no impact on the performance of normal MD simulations.

ForceBalance interfaces with GROMACS-X2 through the functions in abinitio gmxx2.py ; the objective func-
tion and derivatives are computed and printed to output files. The interface is defined in fortune.c on the GROMACS
side. ForceBalance needs to know where the GROMACS-X2 executables are located, and this is specified using the
gmxpath option in the input file.

2.4.1 Prerequisites for GROMACS-X2

GROMACS-X2 needs the base GROMACS requirements and several other libraries.

• FFTW version 3.3

• GLib version 2.0

• Intel MKL library

GLib is the utility library provided by the GNOME foundation (the folks who make the GNOME desktop manager and
GTK+ libraries). GROMACS-X2 requires GLib for its hash table (dictionary).

GLib and FFTW can be compiled from source, but it is much easier if you're using a Linux distribution with
a package manager. If you're running Ubuntu or Debian, run sudo apt-get install libglib2.0-dev
libfftw3-dev; if you're using CentOS or some other distro with the yum package manager, run sudo yum
install glib2-devel.x86 64 fftw3-devel.x86 64 (or replace x86 64 with i386 if you're not on a
64-bit system.

GROMACS-X2 requires the Intel Math Kernel Library (MKL) for linear algebra. In principle this requirement can be
lifted if I rewrite the source code, but it's a lot of trouble, plus MKL is faster than other implementations of BLAS and
LAPACK.

The Intel MKL can be obtained from the Intel website, free of charge for noncommercial use. Currently GROMA←↩
CS-X2 is built with MKL version 10.2, which ships with compiler version 11.1/072 ; this is not the newest version, but it
can still be obtained from the Intel website after you register for a free account.

After installing these packages, extract the tarball that you downloaded from the website using the command:

tar xvjf gromacs-[version]-x2.tar.bz2

The directory structure is identical to GROMACS 4.0.7, but I added some shell scripts. Build.sh will run the
configure script using some special options, compile the objects, create the executables and install them; you will
probably need to modify it slightly for your environment. The comments in the script will help further with installation.

Don't forget to specify the install location of the GROMACS-X2 executables in the ForceBalance input file!

3 Usage

This page describes how to use the ForceBalance software.
A good starting point for using this software package is to run the scripts contained in the bin directory on the

example jobs in the studies directory.
ForceBalance.py is the main executable script for force field optimization. It requires an input file and a

Directory structure. MakeInputFile.py will create an example input file containing all options, their default values,
and a short description for each option.
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3.1 Input file

A minimal input file for ForceBalance might look something like this:

$options
jobtype newton
forcefield water.itp
$end

$target
name cluster-02
type abinitio_gmx
$end

$target
name cluster-03
type abinitio_gmx
$end

Global options for a ForceBalance job are given in the $options section while the settings for each Target are
given in the $target sections. These are the only two section types.

The most important general options to note are: jobtype specifies the optimization algorithm to use and
forcefield specifies the force field file name (there may be more than one of these). The most important tar-
get options to note are: name specifies the target name and type specifies the type of target (must correspond to a
subdirectory in targets/ ). All options are explained in the Option Index.

3.2 Directory structure

The directory structure for our example job would look like:

<root>
+- forcefield
| |- water.itp
+- targets
| +- cluster-02
| | +- settings (contains job settings)
| | | |- shot.mdp
| | | |- topol.top
| | |- all.gro (contains geometries)
| | |- qdata.txt (contains QM data)
| +- cluster-03
| | +- settings
| | | |- shot.mdp
| | | |- topol.top
| | |- all.gro
| | |- qdata.txt
| +- <more target directories>
|- input.in
+- temp
| |- iter_0001
| |- iter_0002
| | |- <files generated during runtime>
+- result
| |- water.itp (Optimized force field, generated on completion)
|- input.in (ForceBalance input file)

The top-level directory names forcefield and targets are fixed and cannot be changed. forcefield contains the force
field files that you're optimizing, and targets contains all of the reference data as well as the input files for simulating
that data using the force field. Each subdirectory in targets corresponds to a single target, and its contents depend on
the specific kind of target and its corresponding Target class.

The temp directory is the temporary workspace of the program, and the result directory is where the optimized
force field files are deposited after the optimization job is done. These two directories are created if not already there.

Note the force field file, water.itp and the two fitting targets cluster-02 and cluster-03 match the
target sections in the input file. There are two energy and force matching targets here; each directory contains the
relevant geometries (in all.gro ) and reference data (in qdata.txt ).
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3.3 Setting up the targets

There are many targets one can choose from.

• Energy and force matching - this is the oldest functionality and the most robust. Enabled in GROMACS, OpenMM,
TINKER, AMBER.

• Electrostatic potential fitting via the RESP method. Enabled in GROMACS and AMBER.

• High-performance interaction energies - intended for the same two fragments in many conformations. Enabled in
GROMACS.

• General binding energies - intended for highly diverse collections of complexes and fragments. Enabled in TIN←↩
KER.

• Normal mode frequencies. Enabled in TINKER.

• Condensed-phase properties; currently enabled only for density and enthalpy of vaporization of water. Enabled
in OpenMM.

• Basis set coefficient fitting; enabled in psi4 (experimental)

One feature of ForceBalance is that targets can be linearly combined to produce an aggregate objective function.
For example, our recently developed polarizable water model contains energy and force matching, binding energies,
normal mode frequencies, density, and enthalpy of vaporization. With the AMOEBA functional form and 19 adjustable
parameters, we developed a highly accurate model that fitted all of these properties to very high accuracy.

Due to the diverse nature of these calculations, they need to be set up in a specific way that is recognized by
ForceBalance. The setup is different for each type of simulation, and we invite you to learn by example through looking
at the files in the studies directory.

3.3.1 Energy and force matching

In these relatively simple simulations, the objective function is computed from the squared difference in the potential
energy and forces (gradients) between the force field and reference (QM) method, evaluated at a number of stored
geometries called snapshots. The mathematics are implemented in abinitio.py while the interfaces to simulation
software exist in derived classes in gmxio.py, tinkerio.py, amberio.py and openmmio.py.

All energy and force matching targets require a coordinate trajectory file (all.gro ) and a quantum data file
(qdata.txt ). The coordinate trajectory file contains the Cartesian coordinates of the snapshots, preferably in the
file format of the simulation software used (all.gro is the most extensively tested.) The quantum data file is formatted
according to a very simple specification:

JOB 0
COORDS x1 y1 z1 x2 y2 z2 ... (floating point numbers in Angstrom)
ENERGY (floating point number in Hartree)
FORCES fx1 fy1 fz1 ... (floating point numbers in Hartree/bohr - this is a misnomer because they are actually gradients, which differ by a sign from the forces.)

JOB 1
...

The coordinates in the quantum data file should be consistent with the coordinate trajectory file, although Force←↩
Balance will use the latter most of the time. It is easy to generate the quantum data file from parsing the output of
quantum chemistry software. ForceBalance contains methods for parsing Q-Chem output files in the molecule.py
class.

In addition to all.gro and qdata.txt , the simulation setup files are required. These contain settings needed
by the simulation software for the calculation to run. For Gromacs calculations, a topology (.top) file and a run parameter
file (.mdp) are required. These should be placed in the settings subdirectory within the directory belonging to the
target.

As a side note: If you wish to tune a number in the .mdp file, simply move it to the forcefield directory and
specify it as a force field file. ForceBalance will now be able to tune any highlighted parameters in the file, although it
will also place copies of this file in all target directories within temp while the program is running.
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3.3.2 potentials

ForceBalance contains methods for evaluating electrostatic potentials given a collection of point charges. At this time,
this functionality is very experimental and risky to use for systems containing more than one molecule. This is because
ForceBalance evaluates the electrostatic potentials internally, and we don't have an infrastructure for building a full
topology consisting of many molecules. Currently, we assume that the electrostatic potential fitting contains only one
molecule.

Once again, the coordinate trajectory file and quantum data files are used to specify the calculation. However, now
the coordinates for evaluating the potential, and the reference potential values, are included:

JOB 0
COORDS x1 y1 z1 x2 y2 z2 ...
ENERGY e
FORCES fx1 fy1 fz1 ...
ESPXYZ ex1 ey1 ez1 ex2 ey2 ez2 ...
ESPVAL ev1 ev2 ev3 ..

3.4 Running the optimization

To run ForceBalance, make sure the calculation is set up properly (refer to the above sections), and then type in:
ForceBalance.py input.in
In general it's impossible to set up a calculation perfectly the first time, in which case the calculation will crash.

ForceBalance will try to print helpful error messages to guide you toward setting up your calculation properly.
Further example inputs and outputs are given in the Tutorial section.

4 Tutorial

This is a tutorial page, but if you haven't installed ForceBalance yet please go to the Installation page first.
It is very much in process, and there are many more examples to come.

4.1 Fitting a TIP4P potential to QM cluster calculations

After everything is installed, go to the studies/001 water tutorial directory in the distribution. Extract the
targets.tar.bz2 archive file. Now execute:

ForceBalance.py very_simple.in

If the installation was successful, you will get an output file similar to very simple.out . What follows is a
description of the output file and what ForceBalance is actually doing.

ForceBalance begins by reading the force field files from the forcefield directory. The parameters to be
optimized are specified in the parameter file by adding a special comment inside the file. For example, in the water.←↩
itp file, we specify that the two van der Waals parameters on oxygen are to be optimized, using the following syntax:

OW 8 15.99940 0.000 A 3.15365e-01 6.48520e-01 ; PRM 5 6

The comment PRM 5 6 signals that ”the parameters in fields 5 and 6 are to be optimized.” The force field parser
stores the physical value of the parameter and gives the parameter a name. These are printed out in the output file:

Reading force field from file: water.itp
#=========================================================#
#| Starting parameter indices, physical values and IDs |#
#=========================================================#

0 [ 3.1537e-01 ] : VDWS:OW
1 [ 6.4852e-01 ] : VDWT:OW
2 [ 9.5720e-02 ] : BONDSB:HWOW
3 [ 5.0242e+05 ] : BONDSK:HWOW
4 [ 1.0452e+02 ] : ANGLESB:HWOWHW
5 [ 6.2802e+02 ] : ANGLESK:HWOWHW
6 [ 5.2000e-01 ] : COUL:SOL-2 COUL:SOL-3
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7 [ -1.0400e+00 ] : COUL:SOL-4
8 [ 1.2800e-01 ] : VSITE3B:SOL-4 VSITE3A:SOL-4

-----------------------------------------------------------

The next section it prints out are a set of rescaling factors which are important for various aspects of the optimization.
They are discussed further in this forum post. For now it suffices to say that these values represent the natural size
of the parameter, or more specifically how much the parameter is expected to vary.

#========================================================#
#| Rescaling Factors (Lower Takes Precedence): |#
#========================================================#

BONDSB : 5.29177e-02
BONDSK : 9.37583e+05
VSITE3A : 5.29177e-02
VSITE3B : 5.29177e-02
ANGLESB : 5.72958e+01
VDWS : 5.29177e-02
ANGLESK : 6.05928e+02
COUL : 1.00000e+00
VDWT : 2.47894e+00

----------------------------------------------------------

Next, it prints out user-specified options that pertain to the force field the targets, the objective function and the
optimizer. Options that are left at their default values (in this case, most) are not printed out. Use verbose options
True in the input file to print out all of the options.

Now for the good stuff - the optimizer begins. ForceBalance computes each target and prints out an indicator for
each one, then provides a breakdown of the overall objective function:

#========================================================#
#| Main Optimizer |#
#| Newton-Raphson Mode (Adaptive Radius) |#
#========================================================#

#=======================================================================#
#| Target: cluster-06 Type: AbInitio_GMX Objective = 1.12035e-01 |#
#| Difference Denominator Percent |#
#| Physical Variable (Calc-Ref) RMS (Ref) Difference |#
#=======================================================================#

Energy (kJ/mol) 9.4124 27.3135 34.4605%
Gradient (kJ/mol/A) 39.1963 119.0841 32.9148%

-------------------------------------------------------------------------
#=======================================================================#
#| Target: cluster-12 Type: AbInitio_GMX Objective = 1.04039e-01 |#
#| Difference Denominator Percent |#
#| Physical Variable (Calc-Ref) RMS (Ref) Difference |#
#=======================================================================#

Energy (kJ/mol) 15.2291 47.3455 32.1658%
Gradient (kJ/mol/A) 38.5401 118.0240 32.6545%

-------------------------------------------------------------------------
#====================================================================#
#| Objective Function Breakdown |#
#| Target Name Residual x Weight = Contribution |#
#====================================================================#
cluster-06 0.11203 0.500 5.60173e-02
cluster-12 0.10404 0.500 5.20195e-02
Regularization 0.00000 1.000 0.00000e+00
Total 1.08037e-01
----------------------------------------------------------------------

Step |k| |dk| |grad| -=X2=- Delta(X2) StepQual
0 0.000e+00 0.000e+00 3.206e+00 1.08037e-01 0.000e+00 0.000

In this example job, the targets were QM energies and forces for clusters of 6 and 12 water molecules. In the initial
step (using the default TIP4P parameters) and for the first target (6-mers), the RMS error for energies is 9.4124 kJ/mol
(34% of the variance in the QM energies themselves), and the RMS error for atomistic forces is 32% (again, scaled to
the variance of the QM forces). Similar information is printed out for the 12-mers. Each target contributes to the overall
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objective function, whose value is 1.080e-01. The parameters are at their initial values, which means that any penalty
function will have a value of zero (the Regularization term).

Next, ForceBalance takes a step in the parameter space. The default algorithm (a variation of Newton-Raphson)
uses first and second derivative information; the gradient is printed to the screen, as is the parameter step.

#========================================================#
#| Total Gradient |#
#========================================================#

0 [ -1.36605285e-01 ] : VDWS:OW
1 [ -2.24335748e-01 ] : VDWT:OW
2 [ -3.14688760e+00 ] : BONDSB:HWOW
3 [ 3.54975985e-01 ] : BONDSK:HWOW
4 [ -3.24607484e-01 ] : ANGLESB:HWOWHW
5 [ 8.92900123e-02 ] : ANGLESK:HWOWHW
6 [ -7.50893285e-02 ] : COUL:SOL-2 COUL:SOL-3
7 [ -2.44318391e-01 ] : COUL:SOL-4
8 [ -2.23561237e-02 ] : VSITE3B:SOL-4 VSITE3A:SOL-4

----------------------------------------------------------

Levenberg-Marquardt: Newton-Raphson step found (length 1.000e-01), 0.92958359 added to Hessian diagonal
#========================================================#
#| Mathematical Parameters (Current + Step = Next) |#
#========================================================#

0 [ 0.0000e+00 + 2.3057e-02 = 2.3057e-02 ] : VDWS:OW
1 [ 0.0000e+00 + 3.7320e-02 = 3.7320e-02 ] : VDWT:OW
2 [ 0.0000e+00 + 5.7207e-03 = 5.7207e-03 ] : BONDSB:HWOW
3 [ 0.0000e+00 - 3.8228e-02 = -3.8228e-02 ] : BONDSK:HWOW
4 [ 0.0000e+00 + 8.6160e-03 = 8.6160e-03 ] : ANGLESB:HWOWHW
5 [ 0.0000e+00 - 7.4597e-02 = -7.4597e-02 ] : ANGLESK:HWOWHW
6 [ 0.0000e+00 - 7.4155e-03 = -7.4155e-03 ] : COUL:SOL-2 COUL:SOL-3
7 [ 0.0000e+00 + 2.9107e-02 = 2.9107e-02 ] : COUL:SOL-4
8 [ 0.0000e+00 + 6.3479e-03 = 6.3479e-03 ] : VSITE3B:SOL-4 VSITE3A:SOL-4

----------------------------------------------------------
#========================================================#
#| Physical Parameters (Current + Step = Next) |#
#========================================================#

0 [ 3.1537e-01 + 1.2201e-03 = 3.1659e-01 ] : VDWS:OW
1 [ 6.4852e-01 + 9.2513e-02 = 7.4103e-01 ] : VDWT:OW
2 [ 9.5720e-02 + 3.0273e-04 = 9.6023e-02 ] : BONDSB:HWOW
3 [ 5.0242e+05 - 3.5842e+04 = 4.6657e+05 ] : BONDSK:HWOW
4 [ 1.0452e+02 + 4.9366e-01 = 1.0501e+02 ] : ANGLESB:HWOWHW
5 [ 6.2802e+02 - 4.5200e+01 = 5.8282e+02 ] : ANGLESK:HWOWHW
6 [ 5.2000e-01 - 7.4155e-03 = 5.1258e-01 ] : COUL:SOL-2 COUL:SOL-3
7 [ -1.0400e+00 + 2.9107e-02 = -1.0109e+00 ] : COUL:SOL-4
8 [ 1.2800e-01 + 3.3591e-04 = 1.2834e-01 ] : VSITE3B:SOL-4 VSITE3A:SOL-4

----------------------------------------------------------

Note that the step length is limited to a ”trust radius” of 0.1 - this option is tunable. The step in parameter space
is given in terms of the ”mathematical parameters” - the internal optimization variables - and the ”physical parameters”
which are the actual values in the force field files. The mathematical parameters are mainly useful because they can
be used to restart an optimization by creating a read mvals section to the input file and pasting the lines from the
output.

ForceBalance now computes the objective function again, using the new parameter values.

#=======================================================================#
#| Target: cluster-06 Type: AbInitio_GMX Objective = 7.55909e-02 |#
#| Difference Denominator Percent |#
#| Physical Variable (Calc-Ref) RMS (Ref) Difference |#
#=======================================================================#

Energy (kJ/mol) 8.0920 27.3135 29.6263%
Gradient (kJ/mol/A) 30.1378 119.0841 25.3080%

-------------------------------------------------------------------------
#=======================================================================#
#| Target: cluster-12 Type: AbInitio_GMX Objective = 7.17029e-02 |#
#| Difference Denominator Percent |#
#| Physical Variable (Calc-Ref) RMS (Ref) Difference |#
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#=======================================================================#
Energy (kJ/mol) 13.2306 47.3455 27.9447%
Gradient (kJ/mol/A) 30.1330 118.0240 25.5312%

-------------------------------------------------------------------------
#===================================================================================#
#| Objective Function Breakdown |#
#| Target Name Residual x Weight = Contribution (Current-Prev) |#
#===================================================================================#
cluster-06 0.07559 0.500 3.77955e-02 ( -1.822e-02 )
cluster-12 0.07170 0.500 3.58514e-02 ( -1.617e-02 )
Regularization 0.00010 1.000 9.99999e-05 ( +1.000e-04 )
Total 7.37469e-02 ( -3.429e-02 )
-------------------------------------------------------------------------------------

Step |k| |dk| |grad| -=X2=- Delta(X2) StepQual
1 1.000e-01 1.000e-01 1.941e-01 7.37469e-02 3.429e-02 1.001

Using the new parameter values, the values for each target have gone down - that is to say, the force field now
produces better agreement with the reference data. In the objective function breakdown, improvements (i.e. decreasing
values) from the previous step are printed in green while increasing values are printed in red. The ”Regularization” term
is printed in red because the parameters have moved from their initial values, so the penalty function is now finite.

The last line reports:

• The step number (Step)

• The length of the parameter vector in the mathematical parameter space (|k|)

• The length of the most recent step (|dk|)

• The magnitude of the objective function gradient vector (|grad|)

• The objective function value (-=X2=-)

• The standard deviation of the objective function over a user-specified number of optimization steps

• The ratio of actual-to-predicted change in the objective function value. A StepQual value of 1.0 signifies that
the trust radius can be increased.

Eventually, the optimization will converge. For this job (and when this documentation was written) it took five steps:

#=======================================================================#
#| Target: cluster-06 Type: AbInitio_GMX Objective = 6.30676e-02 |#
#| Difference Denominator Percent |#
#| Physical Variable (Calc-Ref) RMS (Ref) Difference |#
#=======================================================================#

Energy (kJ/mol) 7.9083 27.3135 28.9539%
Gradient (kJ/mol/A) 24.1991 119.0841 20.3210%

-------------------------------------------------------------------------
#=======================================================================#
#| Target: cluster-12 Type: AbInitio_GMX Objective = 5.89806e-02 |#
#| Difference Denominator Percent |#
#| Physical Variable (Calc-Ref) RMS (Ref) Difference |#
#=======================================================================#

Energy (kJ/mol) 12.9053 47.3455 27.2578%
Gradient (kJ/mol/A) 24.3021 118.0240 20.5908%

-------------------------------------------------------------------------
#===================================================================================#
#| Objective Function Breakdown |#
#| Target Name Residual x Weight = Contribution (Current-Prev) |#
#===================================================================================#
cluster-06 0.06307 0.500 3.15338e-02 ( -4.544e-07 )
cluster-12 0.05898 0.500 2.94903e-02 ( -7.454e-06 )
Regularization 0.00170 1.000 1.70115e-03 ( +7.704e-06 )
Total 6.27252e-02 ( -2.045e-07 )
-------------------------------------------------------------------------------------

Step |k| |dk| |grad| -=X2=- Delta(X2) StepQual
5 4.124e-01 2.498e-03 2.130e-05 6.27252e-02 2.045e-07 1.029
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Convergence criterion reached for gradient norm (1.00e-04)
@========================================================@
@| Final objective function value |@
@| Full: 6.272524e-02 Un-penalized: 6.102410e-02 |@
@========================================================@
#========================================================#
#| Final optimization parameters: |#
#| Paste to input file to restart |#
#========================================================#
read_mvals

0 [ 3.3161e-02 ] : VDWS:OW
1 [ 4.3311e-02 ] : VDWT:OW
2 [ 5.5070e-03 ] : BONDSB:HWOW
3 [ -4.5933e-02 ] : BONDSK:HWOW
4 [ 1.5497e-02 ] : ANGLESB:HWOWHW
5 [ -3.7655e-01 ] : ANGLESK:HWOWHW
6 [ 2.4929e-03 ] : COUL:SOL-2 COUL:SOL-3
7 [ 1.1874e-02 ] : COUL:SOL-4
8 [ 1.5108e-01 ] : VSITE3B:SOL-4 VSITE3A:SOL-4

/read_mvals
#========================================================#
#| Final physical parameters: |#
#========================================================#

0 [ 3.1712e-01 ] : VDWS:OW
1 [ 7.5589e-01 ] : VDWT:OW
2 [ 9.6011e-02 ] : BONDSB:HWOW
3 [ 4.5935e+05 ] : BONDSK:HWOW
4 [ 1.0541e+02 ] : ANGLESB:HWOWHW
5 [ 3.9986e+02 ] : ANGLESK:HWOWHW
6 [ 5.2249e-01 ] : COUL:SOL-2 COUL:SOL-3
7 [ -1.0281e+00 ] : COUL:SOL-4
8 [ 1.3599e-01 ] : VSITE3B:SOL-4 VSITE3A:SOL-4

----------------------------------------------------------

The final force field has been printed to the ’result’ directory.
#========================================================#
#| Congratulations, ForceBalance has finished |#
#| Give yourself a pat on the back! |#
#========================================================#

As you can see, the objective function has decreased considerably since the previous step, and most of the im-
provement was due to reducing the error in the atomistic forces. In the result directory, you will find an updated
water.itp file with the optimized parameter values.

This newly generated force field is a better fit to the reference data, but is it actually a better force field or did we just
overfit the data? To answer this question, look at validate.in where the job type is set to single, and there are
many more targets. In particular, we are now including QM energies and forces for many cluster sizes ranging from 2
to 12.

Take the read mvals section from the output file of your previous run, paste it intointo the $options section
of validate.in, and run ForceBalance.py validate.in . ForceBalance will now evaluate the objective
function using the force field parameters from the previous optimization.

You should see the following output:

#=======================================================================#
#| Target: cluster-02 Type: AbInitio_GMX Objective = 6.59279e-02 |#
#| Difference Denominator Percent |#
#| Physical Variable (Calc-Ref) RMS (Ref) Difference |#
#=======================================================================#

Energy (kJ/mol) 2.6852 8.9926 29.8605%
Gradient (kJ/mol/A) 24.4491 120.0100 20.3725%

-------------------------------------------------------------------------
#=======================================================================#
#| Target: cluster-03 Type: AbInitio_GMX Objective = 6.86838e-02 |#
#| Difference Denominator Percent |#
#| Physical Variable (Calc-Ref) RMS (Ref) Difference |#
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#=======================================================================#
Energy (kJ/mol) 4.1222 13.3676 30.8370%
Gradient (kJ/mol/A) 24.1603 119.6514 20.1922%

-------------------------------------------------------------------------
#=======================================================================#
#| Target: cluster-04 Type: AbInitio_GMX Objective = 6.99336e-02 |#
#| Difference Denominator Percent |#
#| Physical Variable (Calc-Ref) RMS (Ref) Difference |#
#=======================================================================#

Energy (kJ/mol) 5.3337 17.0641 31.2567%
Gradient (kJ/mol/A) 24.4117 121.2622 20.1313%

-------------------------------------------------------------------------
#=======================================================================#
#| Target: cluster-05 Type: AbInitio_GMX Objective = 6.83413e-02 |#
#| Difference Denominator Percent |#
#| Physical Variable (Calc-Ref) RMS (Ref) Difference |#
#=======================================================================#

Energy (kJ/mol) 6.4445 20.9275 30.7946%
Gradient (kJ/mol/A) 24.2035 120.2407 20.1292%

-------------------------------------------------------------------------
#=======================================================================#
#| Target: cluster-06 Type: AbInitio_GMX Objective = 6.30676e-02 |#
#| Difference Denominator Percent |#
#| Physical Variable (Calc-Ref) RMS (Ref) Difference |#
#=======================================================================#

Energy (kJ/mol) 7.9083 27.3135 28.9539%
Gradient (kJ/mol/A) 24.1990 119.0841 20.3209%

-------------------------------------------------------------------------
#=======================================================================#
#| Target: cluster-07 Type: AbInitio_GMX Objective = 7.23291e-02 |#
#| Difference Denominator Percent |#
#| Physical Variable (Calc-Ref) RMS (Ref) Difference |#
#=======================================================================#

Energy (kJ/mol) 9.0541 28.5018 31.7666%
Gradient (kJ/mol/A) 24.5603 119.6730 20.5228%

-------------------------------------------------------------------------
#=======================================================================#
#| Target: cluster-08 Type: AbInitio_GMX Objective = 6.47534e-02 |#
#| Difference Denominator Percent |#
#| Physical Variable (Calc-Ref) RMS (Ref) Difference |#
#=======================================================================#

Energy (kJ/mol) 9.9105 33.9780 29.1676%
Gradient (kJ/mol/A) 24.5318 118.7419 20.6598%

-------------------------------------------------------------------------
#=======================================================================#
#| Target: cluster-09 Type: AbInitio_GMX Objective = 6.31661e-02 |#
#| Difference Denominator Percent |#
#| Physical Variable (Calc-Ref) RMS (Ref) Difference |#
#=======================================================================#

Energy (kJ/mol) 10.6633 37.0249 28.8003%
Gradient (kJ/mol/A) 24.5632 119.9943 20.4703%

-------------------------------------------------------------------------
#=======================================================================#
#| Target: cluster-10 Type: AbInitio_GMX Objective = 6.16248e-02 |#
#| Difference Denominator Percent |#
#| Physical Variable (Calc-Ref) RMS (Ref) Difference |#
#=======================================================================#

Energy (kJ/mol) 11.3800 40.4430 28.1383%
Gradient (kJ/mol/A) 24.6246 119.4050 20.6227%

-------------------------------------------------------------------------
#=======================================================================#
#| Target: cluster-11 Type: AbInitio_GMX Objective = 5.88603e-02 |#
#| Difference Denominator Percent |#
#| Physical Variable (Calc-Ref) RMS (Ref) Difference |#
#=======================================================================#

Energy (kJ/mol) 12.7370 47.0656 27.0623%
Gradient (kJ/mol/A) 24.6241 118.6740 20.7493%

-------------------------------------------------------------------------
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#=======================================================================#
#| Target: cluster-12 Type: AbInitio_GMX Objective = 5.89805e-02 |#
#| Difference Denominator Percent |#
#| Physical Variable (Calc-Ref) RMS (Ref) Difference |#
#=======================================================================#

Energy (kJ/mol) 12.9053 47.3455 27.2578%
Gradient (kJ/mol/A) 24.3021 118.0240 20.5908%

-------------------------------------------------------------------------
#=======================================================================#
#| Target: cluster-13 Type: AbInitio_GMX Objective = 5.94277e-02 |#
#| Difference Denominator Percent |#
#| Physical Variable (Calc-Ref) RMS (Ref) Difference |#
#=======================================================================#

Energy (kJ/mol) 13.7931 50.5451 27.2887%
Gradient (kJ/mol/A) 24.7275 119.3178 20.7241%

-------------------------------------------------------------------------
#=======================================================================#
#| Target: cluster-14 Type: AbInitio_GMX Objective = 5.53305e-02 |#
#| Difference Denominator Percent |#
#| Physical Variable (Calc-Ref) RMS (Ref) Difference |#
#=======================================================================#

Energy (kJ/mol) 14.1450 54.7952 25.8143%
Gradient (kJ/mol/A) 24.6526 119.0962 20.6997%

-------------------------------------------------------------------------
#====================================================================#
#| Objective Function Breakdown |#
#| Target Name Residual x Weight = Contribution |#
#====================================================================#
cluster-02 0.06593 0.077 5.07138e-03
cluster-03 0.06868 0.077 5.28337e-03
cluster-04 0.06993 0.077 5.37951e-03
cluster-05 0.06834 0.077 5.25702e-03
cluster-06 0.06307 0.077 4.85135e-03
cluster-07 0.07233 0.077 5.56378e-03
cluster-08 0.06475 0.077 4.98103e-03
cluster-09 0.06317 0.077 4.85893e-03
cluster-10 0.06162 0.077 4.74037e-03
cluster-11 0.05886 0.077 4.52772e-03
cluster-12 0.05898 0.077 4.53697e-03
cluster-13 0.05943 0.077 4.57136e-03
cluster-14 0.05533 0.077 4.25619e-03
Regularization 0.00170 1.000 1.70118e-03
Total 6.55802e-02
----------------------------------------------------------------------

As you can see, the agreement is comparable for all of the cluster sizes, and this effectively means that we were
able to achieve an accurate fit to QM energies and forces for a wide range of cluster sizes using only the 6-mers and
12-mers.

A truly good force field needs to accurately reproduce experimental measurements, but these are more difficult to
compute and optimize. ForceBalance provides methods for optimizing using experimental targets, but it is beyond the
scope of this tutorial. However, hopefully this simple example helps to explain how force field optimization works within
the framework of ForceBalance.

Feel free to explore using the other provided input files:

• 0.energy force.in uses all of the targets - cluster sizes 2 through 14 - in the optimization.

• 1.netforce torque.in includes net forces on water molecules and torques in the optimization.

• 2.L1 penalty.in uses a L1 penalty function, effectively causing only some parameters to change and not
others.

• 3.no penalty.in illustrates what happens when no penalty function is used at all.

• 4.change factor.in shows the effect of changing the rescaling factors.

• 5.gradient.in performs a finite-difference check on the objective function gradient.
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5 Glossary

This is a glossary page containing scientific concepts for the discussion of potential optimization, as well as the (auto-
matically generated) documentation of ForceBalance keywords.

5.1 Scientific concepts

• Empirical parameter : Any adjustable parameter in the empirical potential that affects the potential energy,
such as the partial charge on an atom, the equilibrium length of a chemical bond, or the fraction of Hartree-Fock
exchange in a density functional.

• Empirical Potential : A formula that contains empirical parameters and computes the potential energy of a
collection of atoms. Note that in ForceBalance this is used very loosely; even a DFT functional may contain many
empirical parameters, and ForceBalance has the ability to optimize these as well!

• Target : A reference data set from high-level theoretical calculations or experimental measurements, paired with
a procedure to simulate the same quantity using the force field. The objective function is the sum of one or more
targets.

• Force field : This term is used interchangeably with empirical potential.

• Functional form : The mathematical functions in the force field. For instance, a CHARMM-type functional
form has harmonic interactions for bonds and angles, a cosine expansion for the dihedrals, Coulomb interactions
between point charges and Lennard-Jones terms for van der Waals interactions.

• Reference data : In general, any accurately known quantity that the force field is optimized to reproduce.
Reference data can come from either theory or experiment. For instance, energies and forces from a high-level
QM method can be used as reference data (for instance, a CHARMM-type force field can be fitted to reproduce
forces from a DFT or MP2 calculation), or a force field can be optimized to reproduce the experimental density of
a liquid, its enthalpy of vaporization or the solvation free energy of a solute.

Note: Failed to import the optional openff.evaluator package. Note: Failed to import the optional openforcefield package.

5.2 Option index: General options

This section contains a listing of the general options available when running a ForceBalance job, which go into the
$options section. The general options are global for the ForceBalance job, in contrast to 'Target options' which apply to
one target within a job (described in the next section). The option index is generated by running make-option-index.py.

• ADAPTIVE DAMPING (Float)
One-line description : Damping factor that ties down the trust radius to trust0; decrease for a more variable step
size.
Default Value : 0.5
Scope : Main optimizer (Optional)
Full description : See documentation for adaptive factor.
Recommendation : A larger value will ensure that the trust radius never exceeds the original value by more than
a small percentage. 0.5 is a reasonable value to start from.

• ADAPTIVE FACTOR (Float)
One-line description : The step size is increased / decreased by up to this much in the event of a good / bad
step; increase for a more variable step size.
Default Value : 0.25
Scope : Main optimizer (Optional)
Full description : Adaptive adjustment of the step size in trust-radius Newton Raphson. If the optimizer takes a
good step, the step is increased as follows:

trust += adaptive_factor*trust*np.exp(-adaptive_damping*(trust/self.trust0 - 1))
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Note that the adaptive damping option makes sure that the trust radius increases by a smaller factor the further
it deviates from the original trust radius (trust0). On the other hand, if the optimizer takes a bad step, the step is
reduced as follows:

trust = max(ndx*(1./(1+adaptive_factor)), self.mintrust)

Recommendation : 0.2 is a conservative value, 0.5 for big step size adjustments.

• AMBERHOME (String)
One-line description : Path to AMBER installation directory (leave blank to use AMBERHOME environment
variable.
Default Value : None
(Needs full documentation)

• AMOEBA EPS (Float)
One-line description : The AMOEBA mutual polarization criterion.
Default Value : None
(Needs full documentation)

• AMOEBA POL (String)
One-line description : The AMOEBA polarization type, either direct, mutual, or nonpolarizable.
Default Value : None
(Needs full documentation)

• ASYNCHRONOUS (Bool)
One-line description : Execute Work Queue tasks and local calculations asynchronously for improved speed
Default Value : 0
Scope : Targets that use Work Queue (Optional)
Full description : When using Work Queue to distribute computationally intensive tasks (e.g. condensed phase
simulations), it is computationally efficient to run the local jobs concurrently rather than wait for the tasks to finish.
Setting this flag allows local evaluation of targets to proceed while the Work Queue runs in the background, which
speeds up the calculation compared to waiting idly for the Work Queue tasks to complete.
Recommendation : If using Work Queue to distribute tasks for some targets, set to True.

• BACKUP (Bool)
One-line description : Write temp directories to backup before wiping them
Default Value : 1
Scope : All force field optimizations (Optional)

• CONSTRAIN CHARGE (Bool)
One-line description : Specify whether to constrain the charges on the molecules.
Default Value : 0
Scope : Force fields with point charges (Optional)
Full description : It is important for force fields with point charges to not change the overall charge on the
molecule or ion. Setting this option will activate a linear transformation which projects out the direction in param-
eter space that changes the net charge.
Recommendation : Either set to true and check your output carefully, or use ”eval” statements in the force field
file for finer control.

• CONSTRAIN H (Bool)
One-line description : Perform calculations with contrained hydrogen bond lengths.
Default Value : 0
(Needs full documentation)

• CONTINUE (Bool)
One-line description : Continue the current run from where we left off (supports mid-iteration recovery).
Default Value : 0
(Needs full documentation)
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• CONVERGE LOWQ (Bool)
One-line description : Allow convergence on ”low quality” steps
Default Value : 0
(Needs full documentation)

• CONVERGENCE GRADIENT (Float)
One-line description : Convergence criterion of gradient norm
Default Value : 0.001
Scope : Main optimizer (Optional)
Full description : The main optimizer will quit when the objective function gradient falls below this number. Since
this is a newly implemented option, I can't say when this option will fail.
Recommendation : Leave at the default, or set to several orders of magnitude below a typical value of the
gradient (perhaps the gradient at the start of the optimization.)

• CONVERGENCE OBJECTIVE (Float)
One-line description : Convergence criterion of objective function (in MainOptimizer this is the stdev of X2 over
[objective history] steps)
Default Value : 0.0001
Scope : Main optimizer (Optional)
Full description : The main optimizer will quit when the last ten good values of the objective function have a
standard deviation that falls below this number. We use the last ten good values (instead of the latest change in
the objective function), otherwise this condition would be triggered by taking tiny steps.
Recommendation : Decrease this value if it's being triggered by small step sizes.

• CONVERGENCE STEP (Float)
One-line description : Convergence criterion of step size (just needs to fall below this threshold)
Default Value : 0.0001
Scope : Main optimizer (Optional)
Full description : The main optimizer will quit when the step size falls below this number. This happens if we are
approaching a local minimum, or if the optimizer is constantly taking bad steps and the trust radius is reduced
until it falls below this number. In the latter case, this usually means that the derivatives are wrong.
Recommendation : Make sure that this value is much smaller than trust0.

• CRITERIA (Int)
One-line description : The number of convergence criteria that must be met for main optimizer to converge
Default Value : 1
(Needs full documentation)

• DUPLICATE PNAMES (Bool)
One-line description : Allow duplicate parameter names (only if you know what you are doing!
Default Value : 0
(Needs full documentation)

• EIG LOWERBOUND (Float)
One-line description : Minimum eigenvalue for applying steepest descent correction
Default Value : 0.0001
Scope : Main optimizer (Optional)
Full description : The main optimizer will misbehave if there are negative or very small eigenvalues in the
objective function Hessian. In the former case the optimizer will travel toward a saddle point (or local maximum),
and in the latter case the matrix inversion will fail because of the matrix singularity. If the smallest eigenvalue is
below this value, then a multiple of the identity matrix is added to the Hessian to increase the smallest eigenvalue
to at least this value.
Recommendation : Shouldn't have to worry about this setting, unless the optimizer appears to be taking bad
steps or inverting nearly singular matrices.

• ERROR TOLERANCE (Float)
One-line description : Error tolerance; the optimizer will only reject steps that increase the objective function by
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more than this number.
Default Value : 0.0
Scope : Main optimizer (Optional)
Full description : In some targets (e.g. condensed phase properties), the contribution to the objective function
may contain statistical noise and cause the optimization step to be rejected. Introducing an error tolerance allows
the optimization to continue despite some apparent roughness in the objective function surface.
Recommendation : Set to zero for targets that don't have statistical noise. Otherwise, choose a value based on
the rough size of the objective function and the weight of the statistically noisy targets.

• FFDIR (String)
One-line description : Directory containing force fields, relative to project directory
Default Value : forcefield
Scope : All force field optimizations (Optional)
Recommendation : Unless you're using a nonstandard location for force field files, you probably shouldn't
change this.

• FINITE DIFFERENCE FACTOR (Float)
One-line description : Make sure that the finite difference step size does not exceed this multiple of the trust
radius.
Default Value : 0.1
(Needs full documentation)

• FINITE DIFFERENCE H (Float)
One-line description : Step size for finite difference derivatives in many functions
Default Value : 0.001
Scope : fdcheck G or fdcheck H job types, or whenever the objective function is evaluated using finite difference
(Optional)
Full description : When the objective function derivatives are checked using finite difference, or when the
objective function derivative requires finite difference, this is the step size that is used (in the mathematical
space). The actual parameter in the force field is changed by this amount times the rescaling factor.
Recommendation : 1e-2 to 1e-4; run FDCheckG to see if derivatives are accurate; if derivatives are inaccurate
then adjust accordingly. If the objective function itself requires finite difference, there will still be a difference
because FDCheckG(H) uses an accurate seven-point (five-point) stencil. Make sure that the derivatives agree
before settling on a value to use.

• FORCEFIELD (List)
One-line description : The names of force fields, corresponding to directory forcefields/file name.(itp,xml,prm,frcmod,mol2)

Default Value : []
Scope : All force field optimizations (Required)

• GMXPATH (String)
One-line description : Path for GROMACS executables (if not the default)
Default Value :
Scope : Targets that use GROMACS (Required)
Full description : Specify the path where GROMACS executables are installed, most likely ending in 'bin'. Note
that executables are only installed 'bin' if the program is installed using 'make install'; this will NOT be the case if
you simply ran 'make'.
Recommendation : Depends on your local installation and environment.

• GMXSUFFIX (String)
One-line description : The suffix of GROMACS executables
Default Value :
Scope : Targets that use GROMACS (Optional)
Full description : Depending on how GROMACS is configured and installed, a suffix may be appended to
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executable names. If there is a suffix, it needs to be specified here (or else ForceBalance will not find the GRO←↩
MACS executable and it will crash.
Recommendation : Depends on your local installation and environment.

• HAVE VSITE (Bool)
One-line description : Specify whether there are virtual sites in the simulation (being fitted or not). Enforces
calculation of vsite positions.
Default Value : 0
(Needs full documentation)

• JOBTYPE (Allcap)
One-line description : The calculation type, defaults to a single-point evaluation of objective function.
Default Value : single
Scope : All force field optimizations (Required)
Full description : Here you may specify the type of ForceBalance job. This ranges from gradient-based and
stochastic optimizations to simple scans over the parameter space and finite difference checking of gradients.
Recommendation : See the Optimizer class documentation for which optimizer is best suited for you.

• LM GUESS (Float)
One-line description : Guess value for bracketing line search in trust radius algorithm
Default Value : 1.0
(Needs full documentation)

• LOGARITHMIC MAP (Bool)
One-line description : Optimize in the space of log-variables
Default Value : 0
(Needs full documentation)

• MAXSTEP (Int)
One-line description : Maximum number of steps in an optimization
Default Value : 100
Scope : All iterative optimization jobs (Optional)
Recommendation : At least 100 optimization steps are recommended.

• MINTRUST (Float)
One-line description : Minimum trust radius (if the trust radius is tiny, then noisy optimizations become really
gnarly)
Default Value : 0.0
(Needs full documentation)

• NORMALIZE WEIGHTS (Bool)
One-line description : Normalize the weights for the fitting targets
Default Value : 1
(Needs full documentation)

• OBJECTIVE HISTORY (Int)
One-line description : Number of good optimization steps to average over when checking the objective conver-
gence criterion
Default Value : 2
(Needs full documentation)

• PENALTY ADDITIVE (Float)
One-line description : Factor for additive penalty function in objective function
Default Value : 0.0
Scope : Objective function (Optional)
Full description : Add a penalty to the objective function (e.g. L2 or L1 norm) with this prefactor. Using an
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additive penalty requires an assessment of the order of magnitude of the objective function, but it is closer to the
statistical concept of ridge or LASSO regression.
Recommendation : No recommendation; run a single-point calculation to choose a prefactor. Consider 0.01 for
an objective function of order 1.

• PENALTY ALPHA (Float)
One-line description : Extra parameter for fusion penalty function. Dictates position of log barrier or L1-L0
switch distance
Default Value : 0.001
(Needs full documentation)

• PENALTY HYPERBOLIC B (Float)
One-line description : Cusp region for hyperbolic constraint; for x=0, the Hessian is a/2b
Default Value : 1e-06
(Needs full documentation)

• PENALTY MULTIPLICATIVE (Float)
One-line description : Factor for multiplicative penalty function in objective function
Default Value : 0.0
Scope : Objective function (Optional)
Full description : Multiply the objective function by (1+X) where X is this value. Using an multiplicative penalty
works well for objective functions of any size but it is not equivalent to statistical regularization methods.
Recommendation : A value of 0.01 tends to keep the length of the parameter vector from exceeding 1.

• PENALTY POWER (Float)
One-line description : Power of the Euclidean norm of the parameter vector (default 2.0 is normal L2 penalty)
Default Value : 2.0
(Needs full documentation)

• PENALTY TYPE (String)
One-line description : Type of the penalty: L2, L1 or Box
Default Value : L2
Scope : All force field optimizations (Optional)
Full description : To prevent the optimization from changing the parameters too much, an additional penalty is
applied to the objective function that depends linearly (L1) or quadratically (L2) on the norm of the parameter
displacement vector. L1 corresponds to LASSO regularization while L2 is known as Tikhonov regularization or
ridge regression.
Recommendation : L2; tested and known to be working. Implementation of L1 in progress.

• PRINT GRADIENT (Bool)
One-line description : Print the objective function gradient at every step
Default Value : 1
(Needs full documentation)

• PRINT HESSIAN (Bool)
One-line description : Print the objective function Hessian at every step
Default Value : 0
(Needs full documentation)

• PRINT PARAMETERS (Bool)
One-line description : Print the mathematical and physical parameters at every step
Default Value : 1
(Needs full documentation)

• PRIORS (Section)
One-line description : Paste priors into the input file for them to be read in directly
Default Value : OrderedDict()
(Needs full documentation)
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• READ MVALS (Section)
One-line description : Paste mathematical parameters into the input file for them to be read in directly
Default Value : None
Scope : All force field optimizations (Optional)
Full description : Read in mathematical parameters before starting the optimization. There is a standardized
syntax, given by:

read_mvals
0 [ -2.9766e-01 ] : VDWSOW
1 [ 2.2283e-01 ] : VDWTOW
2 [ -1.1138e-03 ] : BONDSBHWOW
3 [ -9.0883e-02 ] : BONDSKHWOW
\read_mvals

Recommendation : If you run the main optimizer, it will print out this block at the very end for you to use and/or
modify.

• READ PVALS (Section)
One-line description : Paste physical parameters into the input file for them to be read in directly
Default Value : None
Scope : All force field optimizations (Optional)
Full description : Read in physical parameters before starting the optimization. There is a standardized syntax,
given by:

read_pvals
0 [ 2.9961e-01 ] : VDWSOW
1 [ 1.2009e+00 ] : VDWTOW
2 [ 9.5661e-02 ] : BONDSBHWOW
3 [ 4.1721e+05 ] : BONDSKHWOW
\read_pvals

These are the actual numbers that go into the force field file, so note the large changes in magnitude.
Recommendation : If you run the main optimizer, it will print out this block at the very end for you to use and/or
modify.

• READCHK (String)
One-line description : Name of the restart file we read from
Default Value : None
Scope : Main optimizer (Optional)
Full description : The main optimizer has the ability to pick up where it left off by reading / writing checkpoint
files. Here you may specify the checkpoint file to read in from a previous optimization run. This is equivalent
to reading in stored parameter values, except the gradient and Hessian (which contains memory from previous
steps) is recorded too.

• REEVALUATE (Bool)
One-line description : Re-evaluate the objective function and gradients when the step is rejected (for noisy
objective functions).
Default Value : None
(Needs full documentation)

• RIGID WATER (Bool)
One-line description : Perform calculations using rigid water molecules.
Default Value : 0
(Needs full documentation)

• RPMD BEADS (Int)
One-line description : Number of beads in ring polymer MD (zero to disable)
Default Value : 0
(Needs full documentation)
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• SCAN VALS (String)
One-line description : Values to scan in the parameter space, given like this: -0.1:0.1:11
Default Value : None
Scope : scan mvals and scan pvals job types (Optional)
Full description : This specifies a range of parameter values to scan in a uniform grid. scan mvals works in the
mathematical parameter space while scan pvals works in the physical parameter space. The syntax is lower←↩
:upper:nsteps (just like numpy.linspace) . Both lower and upper limits are included in the range.
Recommendation : For scan mvals, a range of values between -1 and +1 is recommended; for scan pvals,
choose values close to the physical parameter value.

• SCANINDEX NAME (List)
One-line description : Parameter name to scan over (should convert to a numerical index)
Default Value : []
Scope : scan mvals and scan pvals job types (Optional)
Full description : ForceBalance assigns to each adjustable parameter a 'parameter name'. By specifying this
option, this tells the parameter scanner to locate the correct parameter with the specified name and then scan
over it.
Recommendation : Look at the printout from a single-point job to determine the parameter names.

• SCANINDEX NUM (List)
One-line description : Numerical index of the parameter to scan over
Default Value : []
Scope : scan mvals and scan pvals job types (Optional)
Full description : ForceBalance assigns to each adjustable parameter a 'parameter number' corresponding to
its position in the parameter vector. This tells the parameter scanner which number to scan over.
Recommendation : Look at the printout from a single-point job to decide which parameter number you wish to
scan over.

• SEARCH TOLERANCE (Float)
One-line description : Search tolerance; used only when trust radius is negative, dictates convergence threshold
of nonlinear search.
Default Value : 0.0001
(Needs full documentation)

• STEP LOWERBOUND (Float)
One-line description : Optimization will ”fail” if step falls below this size
Default Value : 1e-06
(Needs full documentation)

• TINKERPATH (String)
One-line description : Path for TINKER executables (if not the default)
Default Value : /home/leeping/opt/tinker/current/bin
Scope : Targets that use TINKER (Required)
Recommendation : Depends on your local installation and environment.

• TRUST0 (Float)
One-line description : Levenberg-Marquardt trust radius; set to negative for nonlinear search
Default Value : 0.1
Scope : Main optimizer (Optional)
Full description : The main optimizer uses a trust radius which 'adapts' (i.e. increases or decreases) based on
whether the last step was a good or bad step. 'trust0' provides the starting trust radius, and the trust radius is not
allowed to increase too much from trust0.
Recommendation : Increase from the default if the optimizer takes many good steps but takes too long; decrease
if the optimizer takes many bad steps.

• USE PVALS (Bool)
One-line description : Bypass the transformation matrix and use the physical parameters directly
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Default Value : 0
(Needs full documentation)

• VERBOSE OPTIONS (Bool)
One-line description : Set to false to suppress printing options that are equal to their defaults
Default Value : 0
(Needs full documentation)

• VSITE BONDS (Bool)
One-line description : Generate bonds from virtual sites to host atom bonded atoms.
Default Value : 0
(Needs full documentation)

• WQ PORT (Int)
One-line description : The port number to use for Work Queue
Default Value : 0
(Needs full documentation)

• WRITECHK (String)
One-line description : Name of the restart file we write to (can be same as readchk)
Default Value : None
Scope : Main optimizer (Optional)
Full description : The main optimizer has the ability to pick up where it left off by reading / writing checkpoint
files. Here you may specify the checkpoint file to write after the job is finished.
Recommendation : Writing the checkpoint file is highly recommended.

• WRITECHK STEP (Bool)
One-line description : Write the checkpoint file at every optimization step
Default Value : 1
Scope : Main optimizer when 'writechk' is turned on (Optional)
Full description : Write a checkpoint file every single step, not just after the job is finished.
Recommendation : Useful if you want to quit an optimization before it finishes and restart, but make sure you
don't overwrite existing checkpoint files by accident.

• ZEROGRAD (Int)
One-line description : Set to a nonnegative number to turn on zero gradient skipping at that optimization step.
Default Value : -1
(Needs full documentation)

5.3 Option index: Target options

This section contains a listing of the target options available when running a ForceBalance job, which go into the
$tgt opts section. There can be multiple $tgt opts sections in a ForceBalance input file, one for each target.

• ABSOLUTE (Bool)
One-line description : When matching energies in AbInitio, do not subtract the mean energy gap.
Default Value : 0
(Needs full documentation)

• ADAPT ERRORS (Bool)
One-line description : Adapt to simulation uncertainty by combining property estimations and adjusting simula-
tion length.
Default Value : 0
(Needs full documentation)
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• ALL AT ONCE (Bool)
One-line description : Compute all energies and forces in one fell swoop where possible(as opposed to calling
the simulation code once per snapshot)
Default Value : 1
(Needs full documentation)

• AMBER LEAPCMD (String)
One-line description : File containing commands for ”tleap” when setting up AMBER simulations.
Default Value : None
(Needs full documentation)

• ANISOTROPIC BOX (Bool)
One-line description : Enable anisotropic box scaling (e.g. for crystals or two-phase simulations) in external
npt.py script
Default Value : 0
(Needs full documentation)

• ATTENUATE (Bool)
One-line description : Normalize interaction energies using 1/(denom∗∗2 + reference∗∗2) only for repulsive
interactions greater than denom.
Default Value : 0
(Needs full documentation)

• CAUCHY (Bool)
One-line description : Normalize interaction energies each using 1/(denom∗∗2 + reference∗∗2) which resem-
bles a Cauchy distribution
Default Value : 0
(Needs full documentation)

• COORDS (String)
One-line description : Coordinates for single point evaluation; if not provided, will search for a default.
Default Value : None
(Needs full documentation)

• DIPOLE DENOM (Float)
One-line description : Dipole normalization (Debye) ; set to 0 if a zero weight is desired
Default Value : 1.0
(Needs full documentation)

• DO COSMO (Bool)
One-line description : Call Q-Chem to do MM COSMO on MM snapshots.
Default Value : 0
(Needs full documentation)

• ENERGY (Bool)
One-line description : Enable the energy objective function
Default Value : 1
(Needs full documentation)

• ENERGY ASYMMETRY (Float)
One-line description : Snapshots with (E MM - E QM) < 0.0 will have their weights increased by this factor.
Default Value : 1.0
(Needs full documentation)

• ENERGY DENOM (Float)
One-line description : Energy normalization for binding energies in kcal/mol (default is to use stdev)
Default Value : 1.0
(Needs full documentation)
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• ENERGY RMS OVERRIDE (Float)
One-line description : If nonzero, override the Energy RMS used to normalize the energy part of the objective
function term
Default Value : 0.0
(Needs full documentation)

• ENERGY UPPER (Float)
One-line description : Upper energy cutoff (in kcal/mol); super-repulsive interactions are given zero weight
Default Value : 30.0
(Needs full documentation)

• ENGINE (Allcap)
One-line description : The external code used to execute the simulations (GMX, TINKER, AMBER, OpenMM)
Default Value : None
(Needs full documentation)

• EPSGRAD (Float)
One-line description : Gradient below this threshold will be set to zero.
Default Value : 0.0
(Needs full documentation)

• EQ STEPS (Int)
One-line description : Number of time steps for the equilibration run.
Default Value : 20000
(Needs full documentation)

• EVALUATOR INPUT (String)
One-line description : JSON file containing options for the OpenFF Evaluator target. If not provided, will search
for a default.
Default Value : evaluator input.json
(Needs full documentation)

• EXPDATA TXT (String)
One-line description : Text file containing experimental data.
Default Value : expset.txt
(Needs full documentation)

• FD PTYPES (List)
One-line description : The parameter types that are differentiated using finite difference
Default Value : []
Scope : All target types (Optional)
Full description : To compute the objective function derivatives, some components may require numerical finite
difference in the derivatives. Here you may specify the parameter types that finite difference is applied to, or write
'ALL' to take finite-difference derivatives in all parameter types.
Recommendation : If you aren't sure, either use 'ALL' to do finite difference in each component (this is costly),
or run a fdcheckG(H) job with this option set to 'NONE' to check which analytic derivatives are missing.

• FDGRAD (Bool)
One-line description : Finite difference gradient of objective function w/r.t. specified parameters
Default Value : 0
Scope : All target types (Optional)
Full description : When this option is enabled, finite difference gradients will be enabled for selected parameter
types (using the fd ptypes option). Gradients are computed using two-point finite difference of the objective
function.
Recommendation : If analytic derivatives are implemented (and correct), then they are much faster than finite
difference derivatives. Run the 'fdcheckG' routine with this option set to Off to check which finite difference
derivatives you need.
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• FDHESS (Bool)
One-line description : Finite difference Hessian of objective function w/r.t. specified parameters
Default Value : 0
Scope : All target types (Optional)
Full description : When this option is enabled, finite difference Hessians will be enabled for selected parameter
types (using the fd ptypes option). Hessians are computed using two-point finite difference of the gradient.
Recommendation : Run the 'fdcheckH' routine with this option set to Off to check which finite difference Hessian
elements you need. Note that this requires a very large number of objective function evaluations, so use sparingly.

• FDHESSDIAG (Bool)
One-line description : Finite difference Hessian diagonals w/r.t. specified parameters (costs 2np times a objec-
tive calculation)
Default Value : 0
Scope : All target types (Optional)
Full description : When this option is enabled, finite difference gradients and Hessian diagonal elements will be
enabled for selected parameter types (using the fd ptypes option). This is done using a three-point finite differ-
ence of the objective function.
Recommendation : Use this as a substitute for 'fdgrad'; it doubles the cost but provides more accurate deriva-
tives plus the Hessian diagonal values (these are very nice for quasi-Newton optimizers like BFGS).

• FITATOMS (String)
One-line description : Number of fitting atoms; defaults to all of them. Use a comma and dash style list (1,2-5),
atoms numbered from one, inclusive
Default Value : 0
Scope : Force and energy matching (Optional)
Full description : Choose a subset of atoms to fit forces to. This is useful in situations where it is undesirable to
fit the forces on part of the system (e.g. the part that is described by another force field.) Currently, you are only
allowed to choose from the atoms in the front of the trajectory; soon this will be expanded for random flexibility
(see 'shots'). However, random coordinate selections are not allowed. ;)
Recommendation : Situation-dependent; this should be based on the part of the system that you're fitting, or
leave blank if you're fitting the whole system.

• FORCE (Bool)
One-line description : Enable the force objective function
Default Value : 1
(Needs full documentation)

• FORCE AVERAGE (Bool)
One-line description : Average over all atoms when normalizing force errors.
Default Value : 0
(Needs full documentation)

• FORCE CUDA (Bool)
One-line description : Force the external npt.py script to crash if CUDA Platform not available
Default Value : 0
(Needs full documentation)

• FORCE MAP (String)
One-line description : The resolution of mapping interactions to net forces and torques for groups of atoms. In
order of resolution: molecule > residue > charge-group
Default Value : residue
(Needs full documentation)

• FORCE RMS OVERRIDE (Float)
One-line description : If nonzero, override the Force RMS used to normalize the energy part of the objective
function term
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Default Value : 0.0
(Needs full documentation)

• FRAGMENT1 (String)
One-line description : Interaction fragment 1: a selection of atoms specified using atoms and dashes, e.g. 1-6
to select the first through sixth atom (i.e. list numbering starts from 1)
Default Value :
(Needs full documentation)

• FRAGMENT2 (String)
One-line description : Interaction fragment 2: a selection of atoms specified using atoms and dashes, e.g. 7-11
to select atoms 7 through 11.
Default Value :
(Needs full documentation)

• GAS COORDS (String)
One-line description : Provide file name for gas phase coordinates.
Default Value : None
(Needs full documentation)

• GAS EQ STEPS (Int)
One-line description : Number of time steps for the gas equilibration run, if different from default.
Default Value : 10000
(Needs full documentation)

• GAS INTERVAL (Float)
One-line description : Time interval for saving coordinates for the gas production run (if zero, use default in
external script.)
Default Value : 0.1
(Needs full documentation)

• GAS MD STEPS (Int)
One-line description : Number of time steps for the gas production run, if different from default.
Default Value : 100000
(Needs full documentation)

• GAS TIMESTEP (Float)
One-line description : Time step size for the gas simulation (if zero, use default in external script.).
Default Value : 1.0
(Needs full documentation)

• GMX EQ BAROSTAT (String)
One-line description : Name of the barostat to use for equilibration.
Default Value : berendsen
(Needs full documentation)

• GMX MDP (String)
One-line description : Gromacs .mdp files. If not provided, will search for default.
Default Value : None
(Needs full documentation)

• GMX NDX (String)
One-line description : Gromacs .ndx files. If not provided, will search for default.
Default Value : None
(Needs full documentation)
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• GMX TOP (String)
One-line description : Gromacs .top files. If not provided, will search for default.
Default Value : None
(Needs full documentation)

• HFE PRESSURE (Float)
One-line description : Simulation temperature for hydration free energies (atm)
Default Value : 1.0
(Needs full documentation)

• HFE TEMPERATURE (Float)
One-line description : Simulation temperature for hydration free energies (Kelvin)
Default Value : 298.15
(Needs full documentation)

• HFEDATA TXT (String)
One-line description : Text file containing experimental data.
Default Value : hfedata.txt
(Needs full documentation)

• HFEMODE (String)
One-line description : Method for calculating hydration energies (single point, FEP, TI).
Default Value : single
(Needs full documentation)

• HVAP SUBAVERAGE (Bool)
One-line description : Don't target the average enthalpy of vaporization and allow it to freely float (experimental)
Default Value : 0
(Needs full documentation)

• INTER TXT (String)
One-line description : Text file containing interacting systems. If not provided, will search for a default.
Default Value : interactions.txt
(Needs full documentation)

• LIPID COORDS (String)
One-line description : Provide file name for lipid coordinates.
Default Value : None
(Needs full documentation)

• LIPID EQ STEPS (Int)
One-line description : Number of time steps for the lipid equilibration run.
Default Value : 1000
(Needs full documentation)

• LIPID INTERVAL (Float)
One-line description : Time interval for saving coordinates for the lipid production run.
Default Value : 0.1
(Needs full documentation)

• LIPID MD STEPS (Int)
One-line description : Number of time steps for the lipid production run.
Default Value : 10000
(Needs full documentation)

• LIPID TIMESTEP (Float)
One-line description : Time step size for the lipid simulation.
Default Value : 1.0
(Needs full documentation)
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• LIQUID COORDS (String)
One-line description : Provide file name for condensed phase coordinates.
Default Value : None
(Needs full documentation)

• LIQUID EQ STEPS (Int)
One-line description : Number of time steps for the liquid equilibration run.
Default Value : 1000
(Needs full documentation)

• LIQUID FDIFF H (Float)
One-line description : Step size for finite difference derivatives for liquid targets in pure num grad
Default Value : 0.01
(Needs full documentation)

• LIQUID INTERVAL (Float)
One-line description : Time interval for saving coordinates for the liquid production run.
Default Value : 0.1
(Needs full documentation)

• LIQUID MD STEPS (Int)
One-line description : Number of time steps for the liquid production run.
Default Value : 10000
(Needs full documentation)

• LIQUID TIMESTEP (Float)
One-line description : Time step size for the liquid simulation.
Default Value : 1.0
(Needs full documentation)

• MANUAL (Bool)
One-line description : Give the user a chance to fill in condensed phase stuff on the zeroth step
Default Value : 0
(Needs full documentation)

• MD STEPS (Int)
One-line description : Number of time steps for the production run.
Default Value : 50000
(Needs full documentation)

• MD THREADS (Int)
One-line description : Set the number of threads used by Gromacs or TINKER processes in MD simulations
Default Value : 1
(Needs full documentation)

• MINIMIZE ENERGY (Bool)
One-line description : Minimize the energy of the system prior to running dynamics
Default Value : 1
(Needs full documentation)

• MOL2 (List)
One-line description : List of .mol2 files needed to set up the system (in addition to any specified under force-
field)
Default Value : []
(Needs full documentation)
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• MTS INTEGRATOR (Bool)
One-line description : Enable multiple-timestep integrator in external npt.py script
Default Value : 0
(Needs full documentation)

• N MCBAROSTAT (Int)
One-line description : Number of steps in the liquid simulation between MC barostat volume adjustments.
Default Value : 25
(Needs full documentation)

• N MOLECULES (Int)
One-line description : Provide the number of molecules in the structure (defaults to auto-detect).
Default Value : -1
(Needs full documentation)

• N SIM CHAIN (Int)
One-line description : Number of simulations required to calculate quantities.
Default Value : 1
(Needs full documentation)

• NAME (List)
One-line description : The name of the target, corresponding to the directory targets/name ; may provide a list
if multiple targets have the same settings
Default Value : []
Scope : All targets (Required)
Recommendation : Choose a descriptive name and make sure all targets have different names.

• NONBONDED CUTOFF (Float)
One-line description : Cutoff for nonbonded interactions (passed to engines).
Default Value : None
(Needs full documentation)

• NORMALIZE (Bool)
One-line description : Divide objective function by the number of snapshots / vibrations
Default Value : 0
(Needs full documentation)

• NVT COORDS (String)
One-line description : Provide file name for condensed phase NVT coordinates.
Default Value : None
(Needs full documentation)

• NVT EQ STEPS (Int)
One-line description : Number of time steps for the liquid NVT equilibration run.
Default Value : 10000
(Needs full documentation)

• NVT INTERVAL (Float)
One-line description : Time interval for saving coordinates for the NVT simulation production run.
Default Value : 0.1
(Needs full documentation)

• NVT MD STEPS (Int)
One-line description : Number of time steps for the liquid NVT production run.
Default Value : 100000
(Needs full documentation)
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• NVT TIMESTEP (Float)
One-line description : Time step size for the NVT simulation.
Default Value : 1.0
(Needs full documentation)

• OPENMM PLATFORM (String)
One-line description : OpenMM platform. Choose either Reference, CUDA or OpenCL. AMOEBA is on Refer-
ence or CUDA only.
Default Value : None
(Needs full documentation)

• OPENMM PRECISION (String)
One-line description : Precision of OpenMM calculation if using CUDA or OpenCL platform. Choose either
single, double or mixed ; defaults to the OpenMM default.
Default Value : None
(Needs full documentation)

• OPTGEO OPTIONS TXT (String)
One-line description : Text file containing extra options for Optimized Geometry target. If not provided, will
search for a default.
Default Value : optgeo options.txt
(Needs full documentation)

• OPTIMIZE GEOMETRY (Bool)
One-line description : Perform a geometry optimization before computing properties
Default Value : 1
(Needs full documentation)

• PDB (String)
One-line description : PDB file mainly used for building OpenMM and AMBER systems.
Default Value : None
(Needs full documentation)

• POLARIZABILITY DENOM (Float)
One-line description : Dipole polarizability tensor normalization (cubic Angstrom) ; set to 0 if a zero weight is
desired
Default Value : 1.0
(Needs full documentation)

• PURE NUM GRAD (Bool)
One-line description : Pure numerical gradients – launch two additional simulations for each perturbed forcefield
parameter, and compute derivatives using 3-point formula. (This is very expensive and should only serve as a
sanity check)
Default Value : 0
(Needs full documentation)

• QDATA TXT (String)
One-line description : Text file containing quantum data. If not provided, will search for a default (qdata.txt).
Default Value : None
(Needs full documentation)

• QUADRUPOLE DENOM (Float)
One-line description : Quadrupole normalization (Buckingham) ; set to 0 if a zero weight is desired
Default Value : 1.0
(Needs full documentation)
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• QUANTITIES (List)
One-line description : List of quantities to be fitted, each must have corresponding Quantity subclass
Default Value : []
(Needs full documentation)

• READ (String)
One-line description : Provide a temporary directory ”.tmp” to read data from a previous calculation on the initial
iteration (for instance, to restart an aborted run).
Default Value : None
(Needs full documentation)

• REASSIGN MODES (String)
One-line description : Reassign modes before fitting frequencies, using either linear assignment ”permute” or
maximum overlap ”overlap”.
Default Value : None
(Needs full documentation)

• REMOTE (Bool)
One-line description : Evaluate target as a remote work queue task
Default Value : 0
(Needs full documentation)

• REMOTE BACKUP (Bool)
One-line description : When running remote target, back up files at the remote location.
Default Value : 0
(Needs full documentation)

• REMOTE PREFIX (String)
One-line description : Specify an optional prefix script to run in front of rtarget.py, for loading environment
variables
Default Value :
(Needs full documentation)

• RESP (Bool)
One-line description : Enable the RESP objective function
Default Value : 0
(Needs full documentation)

• RESP A (Float)
One-line description : RESP ”a” parameter for strength of penalty; 0.001 is strong, 0.0005 is weak
Default Value : 0.001
(Needs full documentation)

• RESP B (Float)
One-line description : RESP ”b” parameter for hyperbolic behavior; 0.1 is recommended
Default Value : 0.1
(Needs full documentation)

• RESTRAIN K (Float)
One-line description : Force constant for harmonic positional energy restraints
Default Value : 1.0
(Needs full documentation)

• RMSD DENOM (Float)
One-line description : RMSD normalization for optimized geometries in Angstrom
Default Value : 0.1
(Needs full documentation)
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• RUN INTERNAL (Bool)
One-line description : For OpenMM or other codes with Python interface: Compute energies and forces inter-
nally
Default Value : 1
(Needs full documentation)

• SAVE TRAJ (Int)
One-line description : Whether to save trajectories. 0 = Never save; 1 = Delete if optimization step is good; 2 =
Always save
Default Value : 0
(Needs full documentation)

• SELF POL ALPHA (Float)
One-line description : Polarizability parameter for self-polarization correction (in debye).
Default Value : 0.0
(Needs full documentation)

• SELF POL MU0 (Float)
One-line description : Gas-phase dipole parameter for self-polarization correction (in debye).
Default Value : 0.0
(Needs full documentation)

• SHOTS (Int)
One-line description : Number of snapshots; defaults to all of the snapshots
Default Value : -1
Scope : Force and energy matching (Optional)
Full description : This option allows you to choose a subset from the snapshots available in the force matching
'targets' directory. The subset is simply taken from the front of the trajectory. In the future this option will be
expanded to allow a random selection of snapshots, or a specific selection
Recommendation : 100-10,000 snapshots are recommended. Note that you need at least 3x (number of atoms)
if the covariance matrix is turned on.

• SLEEPY (Int)
One-line description : Wait a number of seconds every time this target is visited (gives me a chance to ctrl+C)
Default Value : 0
(Needs full documentation)

• SUBSET (String)
One-line description : Specify a subset of molecules to fit. The rest are used for cross-validation.
Default Value : None
(Needs full documentation)

• TINKER KEY (String)
One-line description : TINKER .key files. If not provided, will search for default.
Default Value : None
(Needs full documentation)

• TYPE (Allcap)
One-line description : The type of fitting target, for instance AbInitio GMX ; this must correspond to the name
of a Target subclass.
Default Value : None
Scope : All targets (Required)
Full description : This is the type of target that you are running. The current accepted values for the target
type are given in the beginning of the objective.py file: ABINITIO GMX, ABINITIO TINKER, ABINITIO OPENMM,
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ABINITIO SMIRNOFF, ABINITIO AMBER, ABINITIO INTERNAL, VIBRATION TINKER, VIBRATION GMX, V←↩
IBRATION AMBER, VIBRATION OPENMM, VIBRATION SMIRNOFF, THERMO GMX, LIQUID OPENMM, LI←↩
QUID SMIRNOFF, LIQUID TINKER, LIQUID GMX, LIQUID AMBER, LIPID GMX, COUNTERPOISE, THCDF←↩
PSI4, RDVR3 PSI4, INTERACTION AMBER, INTERACTION GMX, INTERACTION TINKER, INTERACTIO←↩

N OPENMM, BINDINGENERGY TINKER, BINDINGENERGY GMX, BINDINGENERGY OPENMM, MOMEN←↩
TS TINKER, MOMENTS GMX, MOMENTS OPENMM, HYDRATION OPENMM, OPTGEO OPENMM, OPTG←↩
EO SMIRNOFF, OPTGEOTARGET OPENMM, OPTGEOTARGET SMIRNOFF, TORSIONPROFILE OPENMM,
TORSIONPROFILE SMIRNOFF, EVALUATOR SMIRNOFF, REMOTE TARGET.
Recommendation : Choose the appropriate type, and if the target type is missing, feel free to implement your
own (or ask me for help).

• VDW CUTOFF (Float)
One-line description : Cutoff for vdW interactions if different from other nonbonded interactions
Default Value : None
(Needs full documentation)

• W AL (Float)
One-line description : Weight of average area per lipid
Default Value : 1.0
(Needs full documentation)

• W ALPHA (Float)
One-line description : Weight of thermal expansion coefficient
Default Value : 1.0
(Needs full documentation)

• W CP (Float)
One-line description : Weight of isobaric heat capacity
Default Value : 1.0
(Needs full documentation)

• W ENERGY (Float)
One-line description : Weight of energy
Default Value : 1.0
(Needs full documentation)

• W EPS0 (Float)
One-line description : Weight of dielectric constant
Default Value : 1.0
(Needs full documentation)

• W FORCE (Float)
One-line description : Weight of atomistic forces
Default Value : 1.0
(Needs full documentation)

• W HVAP (Float)
One-line description : Weight of enthalpy of vaporization
Default Value : 1.0
(Needs full documentation)

• W KAPPA (Float)
One-line description : Weight of isothermal compressibility
Default Value : 1.0
(Needs full documentation)
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• W NETFORCE (Float)
One-line description : Weight of net forces (condensed to molecules, residues, or charge groups)
Default Value : 0.0
(Needs full documentation)

• W NORMALIZE (Bool)
One-line description : Normalize the condensed phase property contributions to the liquid / lipid property target
Default Value : 0
(Needs full documentation)

• W RESP (Float)
One-line description : Weight of RESP
Default Value : 0.0
(Needs full documentation)

• W RHO (Float)
One-line description : Weight of experimental density
Default Value : 1.0
(Needs full documentation)

• W SCD (Float)
One-line description : Weight of deuterium order parameter
Default Value : 1.0
(Needs full documentation)

• W SURF TEN (Float)
One-line description : Weight of surface tension
Default Value : 0.0
(Needs full documentation)

• W TORQUE (Float)
One-line description : Weight of torques (condensed to molecules, residues, or charge groups)
Default Value : 0.0
(Needs full documentation)

• WAVENUMBER TOL (Float)
One-line description : Frequency normalization (in wavenumber) for vibrational frequencies
Default Value : 10.0
(Needs full documentation)

• WEIGHT (Float)
One-line description : Weight of the target (determines its importance vs. other targets)
Default Value : 1.0
Scope : All target types (Optional)
Full description : This option specifies the weight that the target will contribute to the objective function. A larger
weight for a given target means that the optimizer will prioritize it over the others. When several targets are used,
the weight should be chosen carefully such that all targets contribute a finite amount to the objective function.
Note that the choice of weight determines the final outcome of the force field, although we hope not by too much.
Recommendation : It is important to specify something here (giving everything equal weight is unlikely to work.)
Run a single-point objective function evaluation with all weights set to one to get a handle on the natural size of
each target's contribution, and then add weights accordingly.

• WRITELEVEL (Int)
One-line description : Affects the amount of data being printed to the temp directory.
Default Value : 0
(Needs full documentation)
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Figure 4: Logo.
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