CHE 155 H;™" Deuteration Derivation 2020F

| OVERVIEW

In Hugo et al. 2009, the deuteration of Hs was investigated in an ion trap at 13.5 K. The key reactions and
their rates are:

Hyt + HD — H,D +H,  Rate = &\ [HD][Hs"] (1)
H,DT + HD — D,HY +H,  Rate = k{2 [HD|[H,DV] (2)
D,H'" + HD — D3t +H,  Rate = k{2 [HD][D,H"] (3)

In these equations, brackets indicate the number density (cm_3), and the k7(z2 ) refer to second-order rate

coefficients in units of cm?® s~! so that the rate has units of cm™2 s™'. At the low temperature, the reverse
reactions are negligible. Furthermore, under the experimental conditions, HD is present in excess, and it
is reasonable to treat [HD] as constant. Under these pseudo-first-order conditions, we can redefine the rate

coefficients
k, = k) [HD] (4)

Using the rates above, we obtain a set of coupled differential equations describing the time evolution of the
number densities.

n
ol o)
C”Hd#?ﬂ = Kk [H3T] — ko[HoDV] (6)
d[%?ﬂ = ko[HyD™T] — k3[DoH™] (7)
Ws] o) ©

| SoLviNG FOR [H3"]

Solving for [H3T](¢) involved simply a normal first-order integrated rate equation. Rearranging Equation

(5):

N
d[ii]] = —ky dt
I[H3*](t) = —kit+C
Hs™)(t) = Ae™! (9)
At t =0, [H3T] = [H3T ], so
[Hs*)(t) = [HsTJoe ! (10)

| SoLviNG FOR [HyD¥]

To solve for the time evolution of [HyD™], we substitute the result of Equation (10) into Equation (6) and
rearrange:
d[H,D*]

” + ko[HoD ] = ky [HzTge k1! (11)
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To make progress, we introduce a new variable p:

d
= ekt diltl = kyeh2! (12)

Now we multiply both sides of Equation (11) by u to get

d[H,D™)
Fq

d
+ [H2D+]d7l: =k [H3+]Oe—(k1—kz)t (13)

From the definition of the product rule for derivatives:

Substitute into Equation (13) and integrate:

/i (u[HD)) dt = /kl[Hg,*]oe*(krW dt

dt
+
pHDF)(t) = kalHs o ]Oe_(kl_’”)t—l—(]
ko — ki
ki[Hg™
[H,DY)(t) = %e’]““rCe’kzt (15)

To evaluate C, we use the boundary condition that at ¢ = 0, [HoD'] = 0, and therefore

k1[Hs "o k1[Hs™ o
0=22 0 0 o= 810 16
kg—k1+ ’ ko — k1 (16)
Substituting, we obtain the integrated rate equation for [HoDT](2):
ki[Hs* o -
[H,D](t) = % (e kit _ kzt) (17)

However, note that if k1 = ko = k, the denominator goes to 0. Looking back, Equation (13) becomes instead

d[HyD™]
pe2

i + [HyD '] =5 = k[Hs o (18)

Then

/% (,U,[HQDJFD dt = /k[Hng}o dt
p[H2DT(1) k[Hs "okt + C
[HoD')(t) = [HsT]okte ™ + Ce™ (19)

Again, at t = 0, [H,DT] = 0, so C = 0. The final result is therefore

[HoDF)(t) = [HsJokte ™™, (k= ki = ko) (20)
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| SoLviNGg FOR [DoH™|

The procedure is essentially the same as for [HoD]. First, substitute Equation (17) into Equation (7) and
rearrange:
d[DoH]
dt

k1k2[Hz %o

+ks[D2HT] = =P

(e_klt - e_k2t) (21)

As before, we introduce the variable p and its derivative:

Multiplying both sides of Equation (21) by u, we obtain (just like before):

d[DoH*] dp ko[l o (o kavt (ke
H|— — - et M 1 3)t __ 2 3
e L ey Fey — k1 (e € )
d kiko[Hs %o 1 _ o, e
— (ulDoHT - pih2lr3 10 (k1—k3)t _ —(ka—ks)t
/dt (klD=H"]) / - (e ¢ )

kle[H3+]0 6_(k1_k3)t e—(k2—k3)t
DoHT = _ o
HDaI ka2 — ki ks — k1 k3 — ko *
kle[H3+]0 e—k‘1t e—kzt h
HH(t) = - — ”
oty = Bkl (MR g )

The boundary condition is at t = 0, [DyH] = 0, so

k1ks[Hs "o 1 1
_ _ 24
¢ ko — k1 ks — k1 ks — ko 24)

So the final result is

kle[H3+]O €_k1t _ e—kgt e—k‘gt _ e—kgt
D.H|(t) = - 25
[ 2 ](t) k2 _ kl k?, _ kl k?’ _ k2 ( )

Note that if ky = kg or k1 = k3 or ko = k3, we would have to rederive an alternative form of this equation
like we did for [HeD"]. We will not do that here.

| SoLvING FOR [D37]

This one is very easy. Using conservation of mass, we know that

[Hs*](t) + [H2D¥](t) + [D2HT](t) + [D3¥](1) = [Hs o (26)

Therefore

[1D5¥(t) = M50 — [H5](¢) — [H2D7(t) — Do) | (27)

where we can insert Equations (10), (17), and (25).
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