![]() |
ForceBalance API
1.3
Automated optimization of force fields and empirical potentials
|
Classes | |
| class | AbInitio |
| Subclass of Target for fitting force fields to ab initio data. More... | |
Functions | |
| def | norm2 (arr, a=0, n=None, step=3) |
| Given a one-dimensional array, return the norm-squared of every "step" elements, starting at 'a' and computing 'n' total elements (so arr[a:a+step*n] must be valid). More... | |
| def | compute_objective_part (SPX, QQ0, Q0, Z, a, n, energy=False, subtract_mean=False, divide=1, L=None, R=None, L2=None, R2=None) |
| def | plot_qm_vs_mm (Q, M, M_orig=None, title='') |
Variables | |
| logger = getLogger(__name__) | |
| def src.abinitio.compute_objective_part | ( | SPX, | |
| QQ0, | |||
| Q0, | |||
| Z, | |||
| a, | |||
| n, | |||
energy = False, |
|||
subtract_mean = False, |
|||
divide = 1, |
|||
L = None, |
|||
R = None, |
|||
L2 = None, |
|||
R2 = None |
|||
| ) |
Definition at line 1114 of file abinitio.py.
| def src.abinitio.norm2 | ( | arr, | |
a = 0, |
|||
n = None, |
|||
step = 3 |
|||
| ) |
Given a one-dimensional array, return the norm-squared of every "step" elements, starting at 'a' and computing 'n' total elements (so arr[a:a+step*n] must be valid).
arr : np.ndarray One-dimensional array to be normed a : int, default=0 The starting index n : int, or None The number of norms to calculate (in intervals of step) step : int, default=3 The number of elements in each norm calculation (this is usually 3)
Definition at line 47 of file abinitio.py.
| def src.abinitio.plot_qm_vs_mm | ( | Q, | |
| M, | |||
M_orig = None, |
|||
title = '' |
|||
| ) |
Definition at line 1145 of file abinitio.py.
| src.abinitio.logger = getLogger(__name__) |
Definition at line 28 of file abinitio.py.
1.8.13